Loading...
research article
Bounded cohomology of lattices in higher rank Lie groups
Let G be an irreducible uniform lattice in a higher semi-simple rank Lie group or algebraic group. We prove that any G-action on the circle by C1 diffeomorphisms is finite. This is achieved by showing that natural map from bounded to usual second cohomology is injective. The latter holds also for non-trivial unitary coefficients, and implies more finiteness results for G; for instance the stable commutator length vanishes. We prove the same theorems for certain lattices in products of trees.
Type
research article
Authors
Publication date
1999
Published in
Volume
1
Issue
2
Start page
199
End page
235
Note
Erratum: same journal, Vol. 1 No. 3 p. 338 (1999).
Peer reviewed
REVIEWED
Written at
OTHER
EPFL units
Available on Infoscience
October 29, 2008
Use this identifier to reference this record