Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. An Overlap-Contention Free True-Single-Phase Clock Dual-Edge-Triggered Flip-Flop
 
conference paper not in proceedings

An Overlap-Contention Free True-Single-Phase Clock Dual-Edge-Triggered Flip-Flop

Bonetti, Andrea  
•
Teman, Adam Shmuel  
•
Burg, Andreas Peter  
2015
IEEE International Symposium on Circuits and Systems (ISCAS)

Dual-edge-triggered (DET) synchronous operation is a very attractive option for low-power, high-performance designs. Compared to conventional single-edge synchronous systems, DET operation is capable of providing the same throughput at half the clock frequency. This can lead to significant power savings on the clock network that is often one of the major contributors to total system power. However, in order to implement DET operation, special registers need to be introduced that sample data on both clock-edges. These registers are more complex than their single-edge counterparts, and often suffer from a certain amount of clock-overlap between the main clock and the internally generated inverted clock. This overlap can cause contention inside the cell and lead to logic failures, especially when operating at scaled power supplies and under process variations that characterize nanometer technologies. This paper presents a novel, static DET flip-flop (DET-FF) with a true-single-phase clock that completely avoids clock overlap hazards by eliminating the need for an inverted clock edge for functionality. The proposed DET FF was implemented in a standard 40nm CMOS technology, showing full functionality at low-voltage operating points, where conventional DET-FFs fail. Under a near-threshold, 500mV supply voltage, the proposed cell also provides a 35% lower CK-to-Q delay and the lowest power-delay-product compared to all considered DET-FF implementations. © 2015 IEEE.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

bonetti_iscas15.pdf

Access type

openaccess

Size

633.84 KB

Format

Adobe PDF

Checksum (MD5)

dbaaa28a7f93060fce9ca5437c236c66

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés