Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Towards a Theory of Robust Localization against Malicious Beacon Nodes
 
conference paper

Towards a Theory of Robust Localization against Malicious Beacon Nodes

Zhong, Sheng
•
Jadliwala, Murtuza
•
Upadhyaya, Shambhu
Show more
2008
Proceedings of the 27th IEEE International Conference on Computer Communication (INFOCOM 2008)
27th IEEE International Conference on Computer Communication (INFOCOM 2008)

Localization in the presence of malicious beacon nodes is an important problem in wireless networks. Although significant progress has been made on this problem, some fundamental theoretical questions still remain unanswered: in the presence of malicious beacon nodes, what are the necessary and sufficient conditions to guarantee a bounded error during 2-dimensional location estimation? Under these necessary and sufficient conditions, what class of localization algorithms can provide that error bound? In this paper, we try to answer these questions. Specifically, we show that, when the number of malicious beacons is greater than or equal to some threshold, there is no localization algorithm that can have a bounded error. Furthermore, when the number of malicious beacons is below that threshold, we identify a class of localization algorithms that can ensure that the localization error is bounded. We also outline two algorithms in this class, one of which is guaranteed to finish in polynomial time (in the number of beacons providing information) in the worst case, while the other is based on a heuristic and is practically efficient. For completeness, we also extend the above results to the 3-dimensional case. Experimental results demonstrate that our solution has very good localization accuracy and computational efficiency.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

RobLoc.pdf

Access type

restricted

Size

305.58 KB

Format

Adobe PDF

Checksum (MD5)

9013391d371d8f4fa16ae0c61070c322

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés