Modeling and simulation of neocortical micro- and mesocircuitry. Part II: Physiology and experimentation
Cortical dynamics underlie many cognitive processes and emerge from complex multi-scale interactions, which are challenging to study in vivo. Large-scale, biophysically detailed models offer a tool which can complement laboratory approaches. We present a model comprising eight somatosensory cortex subregions, 4.2 million morphological and electrically-detailed neurons, and 13.2 billion local and mid-range synapses. In silico tools enabled reproduction and extension of complex laboratory experiments under a single parameterization, providing strong validation. The model reproduced millisecond-precise stimulus-responses, stimulus-encoding under targeted optogenetic activation, and selective propagation of stimulus-evoked activity to downstream areas. The model’s direct correspondence with biology generated predictions about how multiscale organization shapes activity; for example, how cortical activity is shaped by high-dimensional connectivity motifs in local and mid-range connectivity, and spatial targeting rules by inhibitory subpopulations. The latter was facilitated using a rewired connectome which included specific targeting rules observed for different inhibitory neuron types in electron microscopy. The model also predicted the role of inhibitory interneuron types and different layers in stimulus encoding. Simulation tools and a large subvolume of the model are made available to enable further community-driven improvement, validation and investigation.
99693-v1.pdf
main document
openaccess
CC BY
12.3 MB
Adobe PDF
4c2dd14759ae1cffb4179faf37d68929