The smallest PbS nanocrystals pervasively show decreased brightness, linked to surface-mediated decay on the average particle
PbS semiconductor nanocrystals (NCs) have been heavily explored for infrared optoelectronics but can exhibit visible-wavelength quantum-confined optical gaps when sufficiently small (ø = 1.8-2.7 nm). However, small PbS NCs traditionally exhibited very broad ensemble absorption linewidths, attributed to poor size-heterogeneity. Here, harnessing recent synthetic advances, we report photophysical measurements on PbS ensembles that span this underexplored size range. We observe that the smallest PbS NCs pervasively exhibit lower brightness and anomalously accelerated photoluminescence decays-relative to the idealized photophysical models that successfully describe larger NCs. We find that effects of residual ensemble size-heterogeneity are insufficient to explain our observations, so we explore plausible processes that are intrinsic to individual nanocrystals. Notably, the anomalous decay kinetics unfold, surprisingly, over hundreds-of-nanosecond timescales. These are poorly matched to effects of direct carrier trapping or fine-structure thermalization but are consistent with non-radiative recombination linked to a dynamic surface. Thus, the progressive enhancement of anomalous decay in the smallest particles supports predictions that the surface plays an outsized role in exciton-phonon coupling. We corroborate this claim by showing that the anomalous decay is significantly remedied by the installation of a rigidifying shell. Intriguingly, our measurements show that the anomalous aspect of these kinetics is insensitive to temperature between T = 298 and 77 K, offering important experimental constraint on possible mechanisms involving structural fluctuations. Thus, our findings identify and map the anomalous photoluminescence kinetics that become pervasive in the smallest PbS NCs and call for targeted experiments and theory to disentangle their origin.
WOS:001052328300004
2023-08-21
159
7
074704
REVIEWED