Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Thermomagnetism with external and internal magnetic field quantities
 
research article

Thermomagnetism with external and internal magnetic field quantities

Egolf, Peter W.
•
Gama, Sergio
•
Vuarnoz, Didier  
2015
Journal Of Applied Physics

In magnetism literature, usually the applied or external field H-0 is taken to present the results of an investigation. But for certain purposes, it is advantageous to work with the internal magnetic field H that occurs inside a magnetic body. It is well-known that the susceptibility of the material and the demagnetization effect, given by the geometry of a body, link the two usually different fields under consideration. If a probe is a long needle with the external magnetic field and the magnetization in the probe parallel to the axis of the slender body, the two fields are identical. But when building thermomagnetic machines, other demands may require also other shapes (porous materials, particle beds, wavy structures, etc.) of the magnetized material and then a correct distinction of these fields becomes important and in some cases also laborious if one of them must be theoretically determined from the other. This article shows how-from a theoretical point of view-the most important physical properties of thermomagnetism/magnetocalorics, namely, the adiabatic entropy change, the effective specific heat capacity, and the adiabatic temperature change must be transformed. Furthermore, this theory reveals the invariants of magnetocalorics, which are combinations of these three most important properties. (c) 2015 AIP Publishing LLC.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.4923415
Web of Science ID

WOS:000357961000016

Author(s)
Egolf, Peter W.
Gama, Sergio
Vuarnoz, Didier  
Date Issued

2015

Published in
Journal Of Applied Physics
Volume

118

Issue

2

Article Number

023903

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
BUILD-O  
Available on Infoscience
October 20, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/119987
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés