Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. An analytic finite capacity queueing network model capturing congestion and spillbacks
 
conference presentation

An analytic finite capacity queueing network model capturing congestion and spillbacks

Osorio, Carolina  
•
Bierlaire, Michel  
2007
TRISTAN VI, Triennial Symposium on Transportation Analysis

Analytic queueing network models constitute a flexible tool for the study of network flow. These aggregate models are simple to manipulate and their analytic aspect renders them suitable for use within an optimization framework. Analytic queueing network models often assume infinite capacity for all queues. For real systems this infinite capacity assumption does not hold, but is often maintained due to the difficulty of grasping the between-queue correlation structure present in finite capacity networks. This correlation structure helps explain bottleneck effects and spillbacks, the latter being of special interest in networks containing loops because they are a source of potential deadlock (i.e. gridlock). We present an analytic queueing network model which acknowledges the finite capacity of the different queues. The model is adapted for multiple server finite capacity queueing networks with an arbitrary topology and blocking-after-service. By explicitly modelling the blocking phase the model yields a description of the congestion effects. A decomposition method allowing the evaluation of the model is also described. The methods validation, by comparison to both pre-existing methods and simulation results, is presented, as well as its application to the study of patient flow in a network of operative and post-operative units of the Geneva University Hospital.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TRISTAN-CO.pdf

Access type

openaccess

Size

392.67 KB

Format

Adobe PDF

Checksum (MD5)

dfc6cb1c2e1deea993ee4039b0e7c1a5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés