Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. RRB Vector: A Practical General Purpose Immutable Sequence
 
conference paper

RRB Vector: A Practical General Purpose Immutable Sequence

Stucki, Nicolas Alexander  
•
Rompf, Tiark  
•
Bagwell, Phil
Show more
2015
Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming
International Conference on Functional Programming (ICFP)

State-of-the-art immutable collections have wildly differing performance characteristics across their operations, often forcing programmers to choose different collection implementations for each task. Thus, changes to the program can invalidate the choice of collections, making code evolution costly. It would be desirable to have a collection that performs well for a broad range of operations. To this end, we present the RRB-Vector, an immutable sequence collection that offers good performance across a large number of sequential and parallel operations. The underlying innovations are: (1) the Relaxed-Radix-Balanced (RRB) tree structure, which allows efficient structural reorganization, and (2) an optimization that exploits spatio-temporal locality on the RRB data structure in order to offset the cost of traversing the tree. In our benchmarks, the RRB-Vector speedup for parallel operations is lower bounded by 7x when executing on 4 CPUs of 8 cores each. The performance for discrete operations, such as appending on either end, or updating and removing elements, is consistently good and compares favorably to the most important immutable sequence collections in the literature and in use today. The memory footprint of RRB-Vector is on par with arrays and an order of magnitude less than competing collections.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rrbvector.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

1.68 MB

Format

Adobe PDF

Checksum (MD5)

7c88bb34e8abf321394b10ddfe2a7881

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés