Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Hidden bulk and surface effects in the spin polarization of the nodal-line semimetal ZrSiTe
 
research article

Hidden bulk and surface effects in the spin polarization of the nodal-line semimetal ZrSiTe

Gatti, G.  
•
Gosalbez-Martinez, D.  
•
Roth, S.  
Show more
March 17, 2021
Communications Physics

Local inversion symmetry breaking in centrosymmetric materials can lead to large spin polarization of the electronic band structure in separate sectors of the unit cell. Here, the authors reveal such hidden spin polarisation in ZrSiTe using spin and angle resolved photoemission spectroscopy in combination with ab initio band structure calculations and investigate the resultant spin polarised bulk and surface properties

In non-magnetic materials the combination of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC) determines the spin polarization of the band structure. However, a local spin polarization can also arise in centrosymmetric crystals containing ISB subunits. This is namely the case for the nodal-line semimetal ZrSiTe where, by combining spin- and angle-resolved photoelectron spectroscopy with ab initio band structure calculations, we reveal a complex spin polarization. In the bulk, the valence and conduction bands exhibit opposite spin orientations in two spatially separated two-dimensional ZrTe sectors within the unit cell, yielding no net polarization. We also observe spin-polarized surface states that are well separated in energy and momentum from the bulk bands. A layer-by-layer analysis of the spin polarization allows us to unveil the complex evolution of the signal in the bulk states near the surface, thus bringing the intertwined nature of surface and bulk effects to the fore.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s42005-021-00555-x.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.93 MB

Format

Adobe PDF

Checksum (MD5)

76975f982e82aeaa1bc54084e55d3bde

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés