Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Homochiral versus Racemic 2D Covalent Organic Frameworks
 
research article

Homochiral versus Racemic 2D Covalent Organic Frameworks

del Refugio Monroy, José
•
Deshpande, Tejas  
•
Schlecht, Joël
Show more
May 15, 2025
Journal of the American Chemical Society

The synthesis of homochiral two-dimensional covalent organic frameworks (2D COFs) from chiral π-conjugated building blocks is challenging, as chiral units often lead to misaligned stacking interactions. In this work, we introduce helical chirality into 2D COFs using configurationally stable enantiopure and racemic [5]helicenes as linkers in the backbone of 2D [5]HeliCOFs as powders and films. Through condensation with 1,3,5-triformylbenzene (TFB) or 1,3,5-triformylphloroglucinol (TFP), our approach enables the efficient formation of a set of homochiral and racemic 2D [5]HeliCOFs. The resulting carbon-based crystalline and porous frameworks exhibit distinct structural features and different properties between homochiral and racemic counterparts. Propagation of helical chirality into the backbone of the crystalline frameworks leads to the observation of advanced chiroptical properties in the far-red visible spectrum, along with a less compact structure compared with the racemic frameworks. Homogeneous thin films of [5]HeliCOFs disclosed photoluminescent properties arising from the controlled growth of highly ordered π-conjugated lattices. The present study offers insight into general chiral framework formation and extends the Liebisch–Wallach rule to 2D COFs.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

monroy-et-al-2025-homochiral-versus-racemic-2d-covalent-organic-frameworks.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

10.64 MB

Format

Adobe PDF

Checksum (MD5)

fe76c78b0430b07cd3db6783ca6cfc8c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés