Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Exploiting Dispersion-driven Aggregators as a Route to New One-dimensional Organic Nanowires
 
research article

Exploiting Dispersion-driven Aggregators as a Route to New One-dimensional Organic Nanowires

Nicolai, Adrien  
•
Liu, Hongguang  
•
Petraglia, Riccardo  
Show more
2015
The Journal of Physical Chemistry Letters

The efficiency of charge carrier mobility in organic semiconductors is heavily dependent upon the long-range organization (i.e., morphology) and the local relative arrangement of the transporting molecules. Here, we exploit London dispersion forces as a design principle to construct compact one-dimensional (1-D) assemblies of quaterthiophene cores. We demonstrate that the substitution of quaterthiophene with dispersion-driven aggregators (e.g., Mladderanes, hydrogenated pyrenes, etc.) leads to the formation of highly stable and tightly packed 1-D supramolecular assemblies with electronic compactness superior to that of quaterthiophene crystals. Tunability and even tighter stacking arrangements can be achieved by inserting molecular linkers between the quaterthiophene fragments and the dispersion-driven components. The proposed 1-D nanowires represent an original route toward the rational design of efficient organic semiconductors.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés