Electrically driven source of time-energy entangled photons based on a self-pumped silicon microring resonator
Time-energy entangled photon pairs are fundamental resources for quantum communication protocols since they are robust against environmental fluctuations in optical fiber networks. Pair sources based on spontaneous four-wave mixing in silicon microring resonators usually employ expensive external tunable lasers to compensate for ambient fluctuations; adopting self-pumped configurations, instead, lifts the need for such external source. Here we demonstrate the emission of time-energy entangled photon pairs at telecom wavelengths from a silicon self-pumped ring, obtaining a Franson interference fringe with 93.9% +/- 0.9% visibility. (C) 2020 Optical Society of America
WOS:000535920600021
2020-05-15
45
10
2768
2771
REVIEWED