Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ultrafast energy relaxation in bacteriorhodopsin studied by time-integrated fluorescence
 
research article

Ultrafast energy relaxation in bacteriorhodopsin studied by time-integrated fluorescence

Schenkl, S.
•
Portuondo, E.  
•
Zgrablic, G.  
Show more
2002
Physical Chemistry Chemical Physics

Time-integrated fluorescence expts. on native bacteriorhodopsin and on its non-isomerizing form bR5.12 are reported. The exptl. set-up was designed such as to observe emission exclusively from the excited state intermediate I-460. We obtain the first systematic investigation of the fluorescence spectra as a function of the excitation wavelength tuned throughout the entire absorption band of bR. An important finding is that the position of the fluorescence max. does not show a systematic shift when the excitation wavelength is shortened. For excitation with high excess energy, we observe a broadening of the blue wing of the bR fluorescence, indicating incomplete vibrational energy relaxation on the time scale of the lifetime of I-460. Due to a much longer excited state lifetime, vibrational energy relaxation is more effective in bR5.12 and the fluorescence spectra are much less dependent on excitation wavelength. The results are placed in the general framework of thermalization between the retinal chromophore and the protein environment, and are compared with information obtained by femtosecond expts. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1039/b205453a
Author(s)
Schenkl, S.
Portuondo, E.  
Zgrablic, G.  
Chergui, M.  
Haacke, S.
Friedman, N.
Sheves, M.
Date Issued

2002

Published in
Physical Chemistry Chemical Physics
Volume

4

Issue

20

Start page

5020

End page

5024

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LSU  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/225820
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés