Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Learning and Measuring Specialization in Collaborative Swarm Systems
 
research article

Learning and Measuring Specialization in Collaborative Swarm Systems

Li, L.
•
Martinoli, A.  
•
Abu-Mostafa, Y.
2004
Adaptive Behavior

This paper addresses qualitative and quantitative diversity and specialization issues in the framework of selforganizing, distributed, artificial systems. Both diversity and specialization are obtained via distributed learning from initially homogeneous swarms. While measuring diversity essentially quantifies differences among the individuals, assessing the degree of specialization implies correlation between the swarm’s heterogeneity with its overall performance. Starting from the stick-pulling experiment in collective robotics, a task that requires the collaboration of two robots, we abstract and generalize in simulation the task constraints to k robots collaborating sequentially or in parallel. We investigate quantitatively the influence of task constraints and types of reinforcement signals on performance, diversity, and specialization in these collaborative experiments. Results show that, though diversity is not explicitly rewarded in our learning algorithm, even in scenarios without explicit communication among agents the swarm becomes specialized after learning. The degrees of both diversity and specialization are affected strongly by environmental conditions and task constraints. While the specialization measure reveals characteristics related to performance and learning in a clearer way than diversity does, the latter measure appears to be less sensitive to different noise conditions and learning parameters.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AB04.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

238.15 KB

Format

Adobe PDF

Checksum (MD5)

1e60f065eef5a9d3eb92761b15da16aa

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés