Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. High Performance Cyanine Solar Cells
 
doctoral thesis

High Performance Cyanine Solar Cells

Fan, Bin  
2010

Today a plethora of soluble cyanine dyes absorbing from the ultra-violet to the near infrared domain are available owing to more than a century of research and development, mostly in photographic industry. Numerous properties of cyanine dyes suggest that this material class would be interesting for organic solar cell applications. Most importantly the unparalleled absorption coefficients allow using very thin films for harvesting the solar photons. Cyanines also own favourable redox potentials making it possible to use them as electron donors and acceptors in organic heterojunction solar cells. With respect to crystallinity, these polymethine dyes tend to form aggregates where charge and excited states are delocalized over hundreds of molecules. Furthermore, cyanines are cationic polymethine dyes, offering the possibility to tune the materials by choosing the counter-anion. In this thesis work, the limiting factors for efficient power conversion in thin solid cyanine solar cells were studied. The mechanisms of charge separation and extraction in pristine and doped trimethine cyanine (Cy3) solar cells were investigated with various methods including ultrafast time resolved experiments and electrochemical impedance spectroscopy. A rather fast charge collection as well as a slow recombination rate could be revealed. Together with the strong absorption and large exciton diffusion length in cyanine films it could be shown that the bulk heterojunction film architecture of donor and acceptor phases, which is predominantly used in polymer solar cells, was no longer required for achieving high efficiency. Instead, the much simpler planar bilayer architecture proved to be valuable for high extinction dyes such as Cy3 as well as squaraine dyes. The device performance was further optimized by introducing appropriate charge injecting layers at the electrodes. On the anode side, a conductive polyaniline layer was applied that made it possible to reach an efficiency of over 3%, despite the rather narrow absorption band of Cy3 dyes. Oxidative doping of the cyanine layer by various agents was also investigated carefully. A simple solution doping method using a nitrosyl salt was developed that allowed to carefully investigate the effect of cyanine layer conductivity on device performance. At the optimum doping concentration, the maximum external quantum efficiency reached 80%, which corresponds to an internal quantum efficiency of almost unity, when optical losses are considered. Thus it could be demonstrated that organic solar cells based on high extinction dyes processed from solution achieve high device performance, comparable to the one of polymeric bulk-heterojunction cells.

  • Files
  • Details
  • Metrics
Type
doctoral thesis
DOI
10.5075/epfl-thesis-4804
Author(s)
Fan, Bin  
Advisors
Moser, Jacques Edouard  
•
Nüesch, Frank
Date Issued

2010

Publisher

EPFL

Publisher place

Lausanne

Thesis number

4804

Total of pages

181

Subjects

cyanine

•

squaraine

•

spin-coating

•

polyaniline

EPFL units
GR-MO  
Faculty
SB  
School
ISIC  
Doctoral School
EDCH  
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/51674
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés