Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Evaluating the similarity of biochemical reactions and its uses for mapping novel reactions to protein sequences
 
conference poster not in proceedings

Evaluating the similarity of biochemical reactions and its uses for mapping novel reactions to protein sequences

Mohammadi Peyhani, Homa  
•
Hadadi, Noushin  
•
Hatzimanikatis, Vassily  
2017
3rd International SystemsX.ch Conference on system biology

A key challenge in metabolic engineering is to design novel or to improve existing biosynthetic pathways that lead to the cellular production of a given industrial or pharmaceutical compound. In many cases, the required enzymatic reactions for the biosynthesis of the target molecule need to be designed from scratch. BNICE.ch is a method that enables the design of de novo synthetic pathways through the postulation of novel biotransformations. However, finding enzymes that can potentially catalyze the proposed reactions remains a challenge. In this work, we propose a novel method, named BridgIT, to link novel reactions with well characterized enzymatic reactions and their associated genes. BridgIT compares every predicted novel reaction to all known enzymatic reactions for which a protein sequence is available. Novel and known reactions are compared based on the similarity of the reactive site of the substrates and the breakage and formation of atomic bonds during the conversion of the substrate to the product. As a result, BridgIT reports a similarity score for each comparison of known reactions to novel reactions, thus giving an estimate of the likelihood that a given enzyme can catalyze a novel reaction. The candidate proposed enzymes for de novo reactions by BridgIT, are either capable of catalyzing these reactions or they can serve as good initial sequences for the enzyme engineering. BridgIT online tool is freely available on the web (http://lcsb-databases.epfl.ch/) for academia upon subscription

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

BridgIT_poster_SystemsX_2017.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

restricted

Size

8.61 MB

Format

Adobe PDF

Checksum (MD5)

4ac62b4d7aa148f15a9f7e9c272510a6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés