Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Fast Least-Squares Padé approximation of problems with normal operators and meromorphic structure
 
research article

Fast Least-Squares Padé approximation of problems with normal operators and meromorphic structure

Bonizzoni, Francesca  
•
Nobile, Fabio  
•
Perugia, Ilaria
Show more
2020
Mathematics of Computation

In this work, we consider the approximation of Hilbert space-valued meromorphic functions that arise as solution maps of parametric PDEs whose operator is the shift of an operator with normal and compact resolvent, e.g., the Helmholtz equation. In this restrictive setting, we propose a simplified version of the Least-Squares Padé approximation technique studied in [ESAIM Math. Model. Numer. Anal. 52 (2018), pp. 1261–1284] following [J. Approx. Theory 95 (1998), pp. 203–2124]. In particular, the estimation of the poles of the target function reduces to a low-dimensional eigenproblem for a Gramian matrix, allowing for a robust and efficient numerical implementation (hence the “fast” in the name). Moreover, we prove several theoretical results that improve and extend those in [ESAIM Math. Model. Numer. Anal. 52 (2018), pp. 1261–1284], including the exponential decay of the error in the approximation of the poles, and the convergence in measure of the approximant to the target function. The latter result extends the classical one for scalar Padé approximation to our functional framework. We provide numerical results that confirm the improved accuracy of the proposed method with respect to the one introduced in [ESAIM Math. Model. Numer. Anal. 52 (2018), pp. 1261–1284] for differential operators with normal and compact resolvent.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FastPade.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

654.78 KB

Format

Adobe PDF

Checksum (MD5)

d0b6ce5a450d14e4c578761473c9e125

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés