Double-Layer TiO2 Electrodes with Controlled Phase Composition and Morphology for Efficient Light Management in Dye-Sensitized Solar Cells
The light-scattering effect in the dye-sensitized solar cells (DSCs) was studied by controlling TiO2 phase composition and morphology by fabrication of double-layer cells with different arrangement modes. The starting material for preparation of TiO2 cells was synthesized by an aqueous sol-gel process. X-ray diffraction and field emission scanning electron microscopic analyses revealed that TiO2 nanoparticles had particle size ranging between 18 and 44 nm. The optical property and band gap energy of TiO2 nanoparticles were studied through UV-Vis absorption. The indirect optical band gap energy of anatase and rutile nanoparticles was found to be 3.47 and 3.41 eV, respectively. The double-layer DSC made of nanostructured TiO2 film with phase composition of 78 % anatase and 22 % rutile as the under-layer and mixtures of anatase-nanoparticles and anatase-microparticles as the over-layer (i.e., NM solar cell) was shown the highest power conversion efficiency (PCE) of 6.04 % and open circuit voltage of 795 mV. This was achieved due to the optimal balance between the light scattering effect and dye sensitization parameters. Optimum light scattering of photoanode led to improve the PCE of NM double-layer solar cell which was demonstrated by diffuse reflectance spectroscopy.
WOS:000339344100014
2014
25
4
1029
1045
REVIEWED