Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Coordination Chemistry as a Universal Strategy for a Controlled Perovskite Crystallization
 
research article

Coordination Chemistry as a Universal Strategy for a Controlled Perovskite Crystallization

Zuo, Weiwei
•
Byranvand, Mahdi Malekshahi
•
Kodalle, Tim
Show more
August 9, 2023
Advanced Materials

The most efficient and stable perovskite solar cells (PSCs) are made from a complex mixture of precursors. Typically, to then form a thin film, an extreme oversaturation of the perovskite precursor is initiated to trigger nucleation sites, e.g., by vacuum, an airstream, or a so-called antisolvent. Unfortunately, most oversaturation triggers do not expel the lingering (and highly coordinating) dimethyl sulfoxide (DMSO), which is used as a precursor solvent, from the thin films; this detrimentally affects long-term stability. In this work, (the green) dimethyl sulfide (DMS) is introduced as a novel nucleation trigger for perovskite films combining, uniquely, high coordination and high vapor pressure. This gives DMS a universal scope: DMS replaces other solvents by coordinating more strongly and removes itself once the film formation is finished. To demonstrate this novel coordination chemistry approach, MAPbI(3) PSCs are processed, typically dissolved in hard-to-remove (and green) DMSO achieving 21.6% efficiency, among the highest reported efficiencies for this system. To confirm the universality of the strategy, DMS is tested for FAPbI(3) as another composition, which shows higher efficiency of 23.5% compared to 20.9% for a device fabricated with chlorobenzene. This work provides a universal strategy to control perovskite crystallization using coordination chemistry, heralding the revival of perovskite compositions with pure DMSO.

  • Details
  • Metrics
Type
research article
DOI
10.1002/adma.202302889
Web of Science ID

WOS:001044605600001

Author(s)
Zuo, Weiwei
Byranvand, Mahdi Malekshahi
Kodalle, Tim
Zohdi, Mohammadreza
Lim, Jaekeun
Carlsen, Brian  
Friedlmeier, Theresa Magorian
Kot, Malgorzata
Das, Chittaranjan
Flege, Jan Ingo
Show more
Date Issued

2023-08-09

Publisher

Wiley-V C H Verlag Gmbh

Published in
Advanced Materials
Subjects

Chemistry, Multidisciplinary

•

Chemistry, Physical

•

Nanoscience & Nanotechnology

•

Materials Science, Multidisciplinary

•

Physics, Applied

•

Physics, Condensed Matter

•

Chemistry

•

Science & Technology - Other Topics

•

Materials Science

•

Physics

•

coordination chemistry

•

green solvents

•

perovskite crystallization

•

electronic transport-properties

•

high-efficiency

•

solar-cells

•

hysteresis

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

Available on Infoscience
August 28, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/200297
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés