Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Membrane permeabilization: a common mechanism in protein-misfolding diseases
 
review article

Membrane permeabilization: a common mechanism in protein-misfolding diseases

Lashuel, Hilal A  
2005
Science of aging knowledge environment : SAGE KE

Protein aggregation--and, more specifically, amyloid fibril formation--has been implicated as a primary cause of neurodegeneration in Alzheimer's disease, Parkinson's disease, and related disorders, but the mechanism by which this process triggers neuronal death is unknown. Mounting evidence from in vitro studies, cell culture, and animal models of these diseases supports the hypothesis that a structural intermediate on the pathway to fibril formation, rather than amyloid fibrils themselves, may be the pathogenic species. Characterization of these intermediates in solution or upon interactions with membranes indicate that these intermediates form pores and suggests that neurons could be killed by unregulated membrane permeabilization caused by such "amyloid pores."

  • Details
  • Metrics
Type
review article
DOI
10.1126/sageke.2005.38.pe28
PubMed ID

16186179

Author(s)
Lashuel, Hilal A  
Date Issued

2005

Published in
Science of aging knowledge environment : SAGE KE
Volume

2005

Issue

38

Article Number

pe28

Subjects

Cell Membrane Permeability

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMNN  
Available on Infoscience
October 28, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/43969
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés