Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. FEATURE AND SCORE LEVEL COMBINATION OF SUBSPACE GAUSSIANS IN LVCSR TASK
 
report

FEATURE AND SCORE LEVEL COMBINATION OF SUBSPACE GAUSSIANS IN LVCSR TASK

Motlicek, Petr
•
Povey, Daniel
•
Karafiat, Martin
2013

In this paper, we investigate employment of discriminatively trained acoustic features modeled by Subspace Gaussian Mixture Models (SGMMs) for Rich Transcription meeting recognition. More specifically, first, we focus on exploiting various types of complex features estimated using neural network combined with conventional cepstral features and modeled by standard HMM/GMMs and SGMMs. Then, outputs (word sequences) from individual recognizers trained using different features are also combined on a score-level using ROVER for the both acoustic modeling techniques. Experimental results indicate three important findings: (1) SGMMs consistently outperform HMM/GMMs (relative improvement on average by about 6% in terms of WER) when both techniques are exploited on single features; (2) SGMMs benefit much less from feature-level combination (1% relative improvement) as opposed to HMM/GMMs (4% relative improvement) which can eventually match the performance of SGMMs; (3) SGMMs can be significantly improved when individual systems are combined on a score-level. This suggests that the SGMM systems provide complementary recognition outputs. Overall relative improvements of the combined SGMM and HMM/GMM systems are 21% and 17% respectively compared to a standard ASR baseline.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Motlicek_Idiap-RR-37-2013.pdf

Access type

openaccess

Size

496.65 KB

Format

Adobe PDF

Checksum (MD5)

e105cbcaf68e43ee5da2d37d2071fc63

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés