Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Progress Toward Interpretable Machine Learning-Based Disruption Predictors Across Tokamaks
 
research article

Progress Toward Interpretable Machine Learning-Based Disruption Predictors Across Tokamaks

Rea, C.
•
Montes, K. J.
•
Pau, A.  
Show more
September 21, 2020
Fusion Science And Technology

In this paper we lay the groundwork for a robust cross-device comparison of data-driven disruption prediction algorithms on DIII-D and JET tokamaks. In order to consistently carry on a comparative analysis, we define physics-based indicators of disruption precursors based on temperature, density, and radiation profiles that are currently not used in many other machine learning predictors for DIII-D data. These profile-based indicators are shown to well-describe impurity accumulation events in both DIII-D and JET discharges that eventually disrupt. The univariate analysis of the features used as input signals in the data-driven algorithms applied on the data of both tokamaks statistically highlights the differences in the dominant disruption precursors. JET with its ITER-like wall is more prone to impurity accumulation events, while DIII-D is more subject to edge-cooling mechanisms that destabilize dangerous magnetohydrodynamic modes. Even though the analyzed data sets are characterized by such intrinsic differences, we show through a few examples that the inclusion of physics-based disruption markers in data-driven algorithms is a promising path toward the realization of a uniform framework to predict and interpret disruptive scenarios across different tokamaks. As long as the destabilizing precursors are diagnosed in a device-independent way, the knowledge that data-driven algorithms learn on one device can be re-used to explain a disruptive behavior on another device.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FST_2019_final_submission.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

Copyright

Size

1.86 MB

Format

Adobe PDF

Checksum (MD5)

2bef433feccf5b87f7a570f3b6b5fca9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés