Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the robustness of randomized classifiers to adversarial examples
 
research article

On the robustness of randomized classifiers to adversarial examples

Pinot, Rafael  
•
Meunier, Laurent
•
Yger, Florian
Show more
August 2, 2022
Machine Learning

This paper investigates the theory of robustness against adversarial attacks. We focus on randomized classifiers (i.e. classifiers that output random variables) and provide a thorough analysis of their behavior through the lens of statistical learning theory and information theory. To this aim, we introduce a new notion of robustness for randomized classifiers, enforcing local Lipschitzness using probability metrics. Equipped with this definition, we make two new contributions. The first one consists in devising a new upper bound on the adversarial generalization gap of randomized classifiers. More precisely, we devise bounds on the generalization gap and the adversarial gap i.e. the gap between the risk and the worst-case risk under attack) of randomized classifiers. The second contribution presents a yet simple but efficient noise injection method to design robust randomized classifiers. We show that our results are applicable to a wide range of machine learning models under mild hypotheses. We further corroborate our findings with experimental results using deep neural networks on standard image datasets, namely CIFAR-10 and CIFAR-100. On these tasks, we manage to design robust models that simultaneously achieve state-of-the-art accuracy (over 0.82 clean accuracy on CIFAR-10) and enjoy guaranteed robust accuracy bounds (0.45 against l(2) adversaries with magnitude 0.5 on CIFAR-10).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s10994-022-06216-6.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.14 MB

Format

Adobe PDF

Checksum (MD5)

139be4a33e158fd8652a70f7a9ca3efd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés