A Neural-Network-Based Convex Regularizer for Inverse Problems
The emergence of deep-learning-based methods to solve image-reconstruction problems has enabled a significant increase in quality. Unfortunately, these new methods often lack reliability and explainability, and there is a growing interest to address these shortcomings while retaining the boost in performance. In this work, we tackle this issue by revisiting regularizers that are the sum of convex-ridge functions. The gradient of such regularizers is parameterized by a neural network that has a single hidden layer with increasing and learnable activation functions. This neural network is trained within a few minutes as a multistep Gaussian denoiser. The numerical experiments for denoising, CT, and MRI reconstruction show improvements over methods that offer similar reliability guarantees.
goujon2301.pdf
Publisher
Published version
restricted
copyright
5.04 MB
Adobe PDF
67f813b9ec59bf3f8eed8796bd2c29cc