Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Resampling estimation of discrete choice models
 
research article

Resampling estimation of discrete choice models

Ortelli, Nicola Marco  
•
Cochon de Lapparent, Matthieu Marie  
•
Bierlaire, Michel  
March 1, 2024
Journal Of Choice Modelling

In the context of discrete choice modeling, the extraction of potential behavioral insights from large datasets is often limited by the poor scalability of maximum likelihood estimation. This paper proposes a simple and fast dataset-reduction method that is specifically designed to preserve the richness of observations originally present in a dataset, while reducing the computational complexity of the estimation process. Our approach, called LSH-DR, leverages locality -sensitive hashing to create homogeneous clusters, from which representative observations are then sampled and weighted. We demonstrate the efficacy of our approach by applying it on a real -world mode choice dataset: the obtained results show that the samples generated by LSH-DR allow for substantial savings in estimation time while preserving estimation efficiency at little cost.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés