Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Towards a highly efficient and unbiased population-control algorithm for kinetic Monte Carlo simulations
 
conference paper

Towards a highly efficient and unbiased population-control algorithm for kinetic Monte Carlo simulations

Montecchio, Cecilia
•
Lamirand, Vincent  
•
Mancusi, Davide
Show more
Zoia, Andrea
•
Diop, Cheikh M.
Show more
October 15, 2024
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo

Population-control methods are key to non-stationary Monte Carlo simulations of multiplying systems: they prevent either the unbounded growth or the disappearance of neutrons, occurring respectively in supercritical and subcritical conditions; furthermore, they contribute to an efficient allocation of computational resources by addressing the unbalance between the neutron and the precursor populations. In this paper, we present two alternative population-control algorithms: the legacy implementation in TRIPOLI-4®, the Monte Carlo code developed at CEA, and an improved version that is currently under investigation, based on the use of a simplified point-kinetics solver. We assess the performance of these methods through the simulation of a $2.2 step reactivity insertion in a fast system (Flattop-Pu), leading to an increase of the neutron population by a factor 200, which is benchmarked against point kinetics. We show that the new implementation not only suppresses the slight bias that was present in the legacy method due to a stochastic normalization factor, but also outperforms the previous algorithm in terms of variance reduction and improvement of the figure of merit.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1051_epjconf_202430209006.pdf

Type

Main Document

cris-layout.advanced-attachment.oaire.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.3 MB

Format

Adobe PDF

Checksum (MD5)

62a6ce7e7fc748f4f3994931b354f3ad

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés