A hybrid physics-based and data-driven model for intra-day and day-ahead wind power forecasting considering a drastically expanded predictor search space
This work presents a novel hybrid (physics- and data -driven) model for short-term (intra-day and day-ahead, 3h -24h) wind power forecasting (STWPF). Traditionally, STWPF predictors admitted very few meteorological variables only from the grid points closest to the turbines. Here, with the aim to further capture the underlying atmospheric processes ruling the wind variability in the wind farm, the approach relies on drastically expanding the predictor space, composed of numerous meteorological variables throughout a large geographical domain, retrieved from a weather forecasting model (COSMO-1). An ad -hoc genetic algorithm that optimizes the selection of predictors is designed and combined with feed-forward artificial neural networks for its cost function evaluation. The introduced model is compared to multiple benchmark models in a 16-turbine wind farm in the Swiss Jura mountains. For +12h and +24h lead times, the new approach shows a root-mean squared error normalized to the installed wind farm capacity of 11% and 11.6%, respectively. These values entail similar to 16% higher forecasting skill compared to state -of -the -art predictor frameworks. Results highlight the ability of the presented approach to systematically select as predictors different variables with a well-known impact on the wind farm performance, such as the turbulent kinetic energy or the vertical wind shear. Clustering the data according to the wind direction provides substantial benefit. In addition, it provides a better understanding of the attained improvement: largest performances occur in those wind directions affected by highly complex terrain. This indicates that the proposed model can be especially suitable for wind farms in complex terrain.
WOS:001242223400001
2024-08-01
367
123375
REVIEWED
EPFL
Funder | Grant Number |
ETH-Domain Joint Initiative program in the Strategic Area Energy, Climate and Sustainable Environment | |
Swiss Federal Office of Energy | SI / 502135-01 |