Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The effects of VIP on cyclic AMP and glycogen levels in vertebrate retina
 
research article

The effects of VIP on cyclic AMP and glycogen levels in vertebrate retina

Schorderet, M
•
Hof, P
•
Magistretti, P J  
1984
Peptides

The effects of VIP and related-peptides (PHI, secretin, glucagon) on cyclic AMP formation were investigated in intact pieces of rabbit retina. VIP and PHI increased cyclic AMP levels with EC50 of 160 nM and 300 nM respectively. At 5 microM the peptides increased cyclic AMP 46 fold (VIP) and 38 fold (PHI). Secretin was much less potent and glucagon was totally inactive. VIP was also tested for its effects on glycogen levels under similar experimental conditions. In contrast to its pronounced glycogenolytic action in mouse cerebral cortical slices, VIP at 1 microM decreased only moderately (38.3%) 3H-glycogen newly synthesized from 3H-glucose by pieces of rabbit retina. Furthermore a discrepancy between the efficacy of VIP in increasing cyclic AMP and in promoting glycogenolysis appears to exist. A similar dissociation between these two cellular events was also observed with other neuroactive substances. Thus the pronounced increase in cyclic AMP induced by dopamine and forskolin was accompanied by only a moderate decrease in 3H-glycogen levels. Conversely 50 mM potassium induced a 79.9% decrease in 3H-glycogen levels without any significant increase in cyclic AMP.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés