Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Self-Aware Anomaly-Detection for Epilepsy Monitoring on Low-Power Wearable Electrocardiographic Devices
 
conference paper not in proceedings

Self-Aware Anomaly-Detection for Epilepsy Monitoring on Low-Power Wearable Electrocardiographic Devices

Forooghifar, Farnaz  
•
Aminifar, Amin
•
Teijeiro, Tomas  
Show more
April 12, 2021
3rd IEEE International Conference on Artificial Intelligence Circuits and Systems

Low-power wearable technologies offer a promising solution to pervasive epilepsy monitoring by removing the constraints concerning time and location, on one hand, and fulfilling long-term tracking, on the other hand. In the case of epileptic seizures, as the attacks infrequently occur, using an anomaly detection approach reduces the need to record long hours of data for each patient before detecting the successive coming seizures. In this work, by combining the concepts of self-aware system and anomaly detection, we propose an energy-efficient system to detect epileptic seizures on single-lead electrocardiographic signals, which is personalized after analyzing the first seizure of the patient. This system, then, uses a simple anomaly-detection model, whenever the model is deemed reliable, and uses a more complex model otherwise. We show that after the personalization, the number of patients, for which the method provides high sensitivity, can reach 26 out of 43 patients with the false alarm rate (FAR) of 4 alarms/day. Thus, the number of responders to the system is increased by 24%, while the FAR is only increased by one alarm/day, compared to the system that just uses the simple model. This benefit occurs while the system complexity decreases by 27.7% compared to the complex model. After adding the two-level (simple and complex) anomaly-detection, the complexity is tuned between 72.3% and 37.6% of the complex model. Similarly, the sensitivity is tuned between 66.5% and 60.3%.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AICAS_2021_Paper1061_CameraReady.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

n/a

Size

919.15 KB

Format

Adobe PDF

Checksum (MD5)

1f97b77c696834cc025ae4dd829af32b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés