Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Urban acceptability of building integrated solar systems: LESO-QSV approach
 
conference paper

Urban acceptability of building integrated solar systems: LESO-QSV approach

Munari Probst, Maria Cristina  
•
Roecker, Christian  
2011
Proceedings of ISES Solar World Congress 2011
ISES Solar World Congress 2011

The concern for sustainable development issues together with the new EU promotion policies are finally leading to a widespread use of Photovoltaic and Solar Thermal systems in buildings. This upcoming reality is opening a new debate on the urban/architectural acceptability of such systems. In Switzerland the matter has been regulated from 2008 by the art.18-a/LAT, stating that all “carefully integrated” solar systems not attempting to the cultural or natural heritage are accepted. But this text remains ambiguous, and is differently interpreted by solar pros, building heritage administrators and city planners, actually leading to unfair decisions [1]. The presented method aims to bring objectivity to the debate, and to help dealing with the law’s two concerns: support the solar spread and preserve the urban context quality, i.e. ensure that the installed systems have an acceptable integration quality for their given environment. To assess valid and objective acceptability criteria, a few key questions must be answered : Can architectural integration quality be objectively defined? Can it be somehow quantified, and on which bases? And finally, what are the acceptability factors, and how do they interact with each other? The method faces all these questions, starting from an objective and clear definition of architectural integration quality coming from recent studies On the basis of this given definition, a list of solar system characteristics having an impact on the architectural quality is established [4][6]. The detailed evaluation of each of these characteristics in relation to the whole building design leads to a comprehensive and objective quality evaluation, summarized in a “grade” after carefully balancing the impact of each aspect. Finally a table of acceptability conditions is established on the basis of three variable local factors: - Urban context sensitivity (the quality of the architectural environment); - System visibility (close and remote visibility of the proposed system); - Socio-political context (political and energetic priorities specific to place and time). One major advantage of the method is its clarity, coming mainly from the separation of the two phases needed for the decision making process: - On one hand there is the definition and analysis of the architectural quality, carried on the sole base of architectural criteria. - On the other hand there is the assessment of the acceptability levels, variable according to specified local factors, and to be fixed by the local authorities according to the socio-political context and energetic needs.

  • Details
  • Metrics
Type
conference paper
Author(s)
Munari Probst, Maria Cristina  
Roecker, Christian  
Date Issued

2011

Publisher

Universität Kassel

Publisher place

Kassel

Published in
Proceedings of ISES Solar World Congress 2011
Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LESO-PB  
Event nameEvent placeEvent date
ISES Solar World Congress 2011

Kassel, Germany

August 28 - September 2, 2011

Available on Infoscience
February 6, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/77543
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés