Investigating empirical implications of hysteresis in day-to-day travel time variability
Day-to-day travel time variability plays a significant role in travel time reliability. Nowadays, travelers not only seek to minimize their travel time on average, but also value its variation. The variation in the mean and the variance of travel time (across days, for the same departure time) has not been thoroughly investigated. A temporary decrease in capacity (e.g. congestion caused by an active bottleneck) leads to a quite significant difference in the variance of travel time for congestion onset and offset periods. This phenomenon results in hysteresis loops where the departure time periods in congestion offset exhibit a higher travel time variance than the ones in congestion onset with the same mean travel time. The aim of this paper is to identify empirical implications that yield to the hysteresis phenomenon in day-to-day travel times. First, empirical hysteresis loop observations are provided from two different freeway sites. Second, we investigate the potential link with the hysteresis observed in traffic networks on macroscopic fundamental diagram (MFD). Third, we build a piecewise linear function that models the evolution of travel time within the day. This allows us to decompose the problem into its components, e.g. start time of congestion, peak travel time, etc. These components, along with their probability distribution functions, are employed in a Monte Carlo simulation model to investigate their partial effects on the existence of hysteresis. Correlation among critical variables is the most influential factor in this phenomenon, which should be further investigated regarding traffic flow and traffic equilibrium principles. (C) 2015 Elsevier Ltd. All rights reserved.
WOS:000358092100024
2015
55
340
350
REVIEWED