Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit
 
conference paper

Synthetic Linear Analysis: Improved Attacks on CubeHash and Rabbit

Lu, Yi  
•
Vaudenay, Serge  
•
Meier, Willi
Show more
2012
Information Security and Cryptology - ICISC 2011
ICISC

It has been considered most important and difficult to analyze the bias and find a large bias regarding the security of crypto-systems, since the invention of linear cryptanalysis. The demonstration of a large bias will usually imply that the target crypto-system is not strong. Regarding the bias analysis, researchers often focus on a theoretical solution for a specific problem. In this paper, we take a first step towards the synthetic approach on bias analysis. We successfully apply our synthetic analysis to improve the most recent linear attacks on CubeHash and Rabbit respectively. CubeHash was selected to the second round of SHA-3 competition. For CubeHash, the best linear attack on 11-round CubeHash with $2^{470}$ queries was proposed previously. We present an improved attack for 11-round CubeHash with complexity $2^{414.2}$. Based on our 11-round attack, we give a new linear attack for 12-round CubeHash with complexity $2^{513}$, which is sharply close to the security parameter $2^{512}$ of CubeHash. Rabbit is a stream cipher among the finalists of ECRYPT Stream Cipher Project (eSTREAM). For Rabbit, the best linear attack with complexity $2^{141}$ was recently presented. Our synthetic bias analysis yields the improved attack with complexity $2^{136}$. Moreover, it seems that our results might be further improved, according to our ongoing computations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ICISC2011.pdf

Access type

openaccess

Size

137.88 KB

Format

Adobe PDF

Checksum (MD5)

d86b909420cee995ed51143636701bab

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés