Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy
 
research article

Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy

Flauraud, Valentin  
•
Bernasconi, Gabriel D.
•
Butet, Jérémy
Show more
2017
ACS Nano

While plasmonic antennas composed of building blocks made of the same material have been thoroughly studied, recent investigations have highlighted the unique opportunities enabled by making compositionally asymmetric plasmonic systems. So far, mainly heterostructures composed of nanospheres and nanodiscs have been investigated, revealing opportunities for the design of Fano resonant nanostructures, directional scattering, sensing and catalytic applications. In this article, an improved fabrication method is reported that enables precise tuning of the heterodimer geometry, with interparticle distances made down to a few nanometers between Au–Ag and Au–Al nanoparticles. A wide range of mode energy detuning and coupling conditions are observed by near field hyperspectral imaging performed with electron energy loss spectroscopy, supported by full wave analysis numerical simulations. These results provide direct insights into the mode hybridization of plasmonic heterodimers, pointing out the influence of each dimer constituent in the overall electromagnetic response. By relating the coupling of nondipolar modes and plasmon–interband interaction with the dimer geometry, this work facilitates the development of plasmonic heterostructures with tailored responses, beyond the possibilities offered by homodimers.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy.pdf

Access type

openaccess

Size

7.09 MB

Format

Adobe PDF

Checksum (MD5)

985358a7c8de6683c2f354005b287888

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés