Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Generalized size scaling of metabolic rates based on single-cell measurements with freshwater phytoplankton
 
research article

Generalized size scaling of metabolic rates based on single-cell measurements with freshwater phytoplankton

Zaoli, Silvia  
•
Giometto, Andrea  
•
Maranon, Emilio
Show more
August 27, 2019
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)

Kleiber's law describes the scaling of metabolic rate with body size across several orders of magnitude in size and across taxa and is widely regarded as a fundamental law in biology. The physiological origins of Kleiber's law are still debated and generalizations of the law accounting for deviations from the scaling behavior have been proposed. Most theoretical and experimental studies of Kleiber's law, however, have focused on the relationship between the average body size of a species and its mean metabolic rate, neglecting intraspecific variation of these 2 traits. Here, we propose a theoretical characterization of such variation and report on proof-of-concept experiments with freshwater phytoplankton supporting such framework. We performed joint measurements at the single-cell level of cell volume and nitrogen/carbon uptake rates, as proxies of metabolic rates, of 3 phytoplankton species using nanoscale secondary ion mass spectrometry ( NanoSIMS) and stable isotope labeling. Common scaling features of the distribution of nutrient uptake rates and cell volume are found to hold across 3 orders of magnitude in cell size. Once individual measurements of cell volume and nutrient uptake rate within a species are appropriately rescaled by a function of the average cell volume within each species, we find that intraspecific distributions of cell volume and metabolic rates collapse onto a universal curve. Based on the experimental results, this work provides the building blocks for a generalized form of Kleiber's law incorporating intraspecific, correlated variations of nutrient-uptake rates and body sizes.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

17323.full.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

982.17 KB

Format

Adobe PDF

Checksum (MD5)

e9972bdb42bdbd013bec52e30d12a8e0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés