Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Learning How to Smile: Expression Video Generation With Conditional Adversarial Recurrent Nets
 
research article

Learning How to Smile: Expression Video Generation With Conditional Adversarial Recurrent Nets

Wang, Wei  
•
Alameda-Pineda, Xavier
•
Xu, Dan
Show more
November 1, 2020
IEEE Transactions On Multimedia

While several research studies have focused on analyzing human behavior and, in particular, emotional signals from visual data, the problem of synthesizing face video sequences with specific attributes (e.g. age, facial expressions) received much less attention. This paper proposes a novel deep generative model able to produce face videos from a given image of a neutral face and a label indicating a specific facial expression, e.g. spontaneous smile. Our framework consists of two main building blocks: an image generator and a frame sequence generator. The image generator is implemented as a deep neural model which combines generative adversarial networks and variational auto-encoders, while the sequence generator is a label-conditioned recurrent neural network. In the proposed framework, given as input a neural face and a label, the sequence generator outputs a set of hidden representations with smooth transitions corresponding to video frames. Then, the image generator is used to decode the hidden representations into the actual face images. To impose that the net generates videos consistent with the given label, a novel identity adversarial loss is proposed. Our experimental results demonstrate the effectiveness of the framework and the advantage of introducing an adversarial component into recurrent models for face video generation.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés