Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. FDTD method for Maxwells equations in complex geometries
 
conference paper

FDTD method for Maxwells equations in complex geometries

Ditkowski, A.
•
Dridi, K.
•
Hesthaven, J. S.  
2000
Annual Review of Progress in Applied Computational Electromagnetics
Annual Review of Progress in Applied Computational Electromagnetics

A stable second order Cartesian grid finite difference scheme for the solution of Maxwells equations is presented. The scheme employs a staggered grid in space and represents the physical location of the material and metallic boundaries correctly, hence eliminating problems caused by staircasing, and, contrary to the popular Yee scheme, enforces the correct jump-conditions on the field components across material interfaces. To validate the analysis several test cases are presented, showing an improvement of typically 1-2 orders of accuracy at little or none additional computational cost over the Yee scheme, which in most cases exhibits first order accuracy.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés