Evolving Neural Controllers for Collective Robotic Inspection
In this paper, an automatic synthesis methodology based on evolutionary computation is applied to evolve neural controllers for a homogeneous team of miniature autonomous mobile robots. Both feed-forward and recurrent neural networks can be evolved with fixed or variable network topologies. The efficacy of the evolutionary methodology is demonstrated in the framework of a realistic case study on collective robotic inspection of regular structures, where the robots are only equipped with limited local on-board sensing and actuating capabilities. The neural controller solutions generated during evolutions are evaluated in a sensorbased embodied simulation environment with realistic noise. It is shown that the evolutionary algorithms are able to successfully synthesize a variety of novel neural controllers that could achieve performances comparable to a carefully hand-tuned, rule-based controller in terms of both average performance and robustness to noise.
2006
Series Advances in Soft Computing
721
733
Ajith Abraham, Bernard de Baets, Mario Köppen, Bertram Nickolay, Eds.
REVIEWED
EPFL