Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Specific Notch receptor-ligand interactions control human TCR-alpha beta/gamma delta development by inducing differential Notch signal strength
 
research article

Specific Notch receptor-ligand interactions control human TCR-alpha beta/gamma delta development by inducing differential Notch signal strength

Van De Walle, Inge
•
Waegemans, Els
•
De Medts, Jelle
Show more
2013
Journal Of Experimental Medicine

In humans, high Notch activation promotes gamma delta T cell development, whereas lower levels promote alpha beta-lineage differentiation. How these different Notch signals are generated has remained unclear. We show that differential Notch receptor-ligand interactions mediate this process. Whereas Delta-like 4 supports both TCR-alpha beta and -gamma delta development, Jagged1 induces mainly alpha beta-lineage differentiation. In contrast, Jagged2-mediated Notch activation primarily results in gamma delta T cell development and represses alpha beta-lineage differentiation by inhibiting TCR-beta formation. Consistently, TCR-alpha beta T cell development is rescued through transduction of a TCR-beta transgene. Jagged2 induces the strongest Notch signal through interactions with both Notch1 and Notch3, whereas Delta-like 4 primarily binds Notch1. In agreement, Notch3 is a stronger Notch activator and only supports gamma delta T cell development, whereas Notch1 is a weaker activator supporting both TCR-alpha beta and -gamma delta development. Fetal thymus organ cultures in JAG2-deficient thymic lobes or with Notch3-blocking antibodies confirm the importance of Jagged2/Notch3 signaling in human TCR-gamma delta differentiation. Our findings reveal that differential Notch receptor-ligand interactions mediate human TCR-alpha beta and -gamma delta T cell differentiation and provide a mechanistic insight into the high Notch dependency of human gamma delta T cell development.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

J Exp Med-2013-Van de Walle-683-97.pdf

Access type

openaccess

Size

3.5 MB

Format

Adobe PDF

Checksum (MD5)

42678b7f1a2f24d5e4758fb98b51aebc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés