Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Modelling diffusion in crystals under high internal stress gradients
 
research article

Modelling diffusion in crystals under high internal stress gradients

Olmsted, D. L.
•
Phillips, R.
•
Curtin, W. A.  
2004
Modelling And Simulation In Materials Science And Engineering

Diffusion of vacancies and impurities in metals is important in many processes occurring in structural materials. This diffusion often takes place in the presence of spatially rapidly varying stresses. Diffusion under stress is frequently modelled by local approximations to the vacancy formation and diffusion activation enthalpies which are linear in the stress, in order to account for its dependence on the local stress state and its gradient. Here, more accurate local approximations to the vacancy formation and diffusion activation enthalpies, and the simulation methods needed to implement them, are introduced. The accuracy of both these approximations and the linear approximations are assessed via comparison to full atomistic studies for the problem of vacancies around a Lomer dislocation in Aluminium. Results show that the local and linear approximations for the vacancy formation enthalpy and diffusion activation enthalpy are accurate to within 0.05 eV outside a radius of about 13 Angstrom (local) and 17 Angstrom (linear) from the centre of the dislocation core or, more generally, for a strain gradient of roughly up to 6 x 10(6) m(-1) and 3 x 10(6) m(-1), respectively. These results provide a basis for the development of multiscale models of diffusion under highly non-uniform stress.

  • Details
  • Metrics
Type
research article
DOI
10.1088/0965-0393/12/5/003
Author(s)
Olmsted, D. L.
Phillips, R.
Curtin, W. A.  
Date Issued

2004

Published in
Modelling And Simulation In Materials Science And Engineering
Volume

12

Start page

781

End page

797

Subjects

cores

•

dislocation

•

solids

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LAMMM  
Available on Infoscience
November 7, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/108336
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés