Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Learning the structure of genetic network dynamics : A geometric approach
 
conference paper

Learning the structure of genetic network dynamics : A geometric approach

Porreca, R.
•
Cinquemani, E.
•
Lygeros, J.
Show more
2011
IFAC Proceedings Volumes
18th IFAC World Congress

This work concerns the identification of the structure of a genetic network model from measurements of gene product concentrations and synthesis rates. In earlier work, for a wide family of network models, we developed a data preprocessing algorithm that is able to reject many hypotheses on the network structure by testing certain monotonicity properties of the models. Here we develop a geometric analysis of the method. Then, for a relevant subclass of genetic network models, we extend our approach to the combined testing of monotonicity and convexity-like properties associated with the network structures. Theoretical achievements as well as performance of the enhanced methods are illustrated by way of numerical results.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés