Floquet Spectroscopy of a Strongly Driven Quantum Dot Charge Qubit with a Microwave Resonator
We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit-resonator resonance condition. In this way, we probe the resonance of a qubit that is driven in an adiabatic, a nonadiabatic, or an intermediate rate, showing distinct quantum features of multiphoton processes and a fringe pattern similar to Landau-Zener-Stückelberg interference. Our resonant detection scheme enables the investigation of novel features when the drive frequency is comparable to the resonator frequency. Models based on the adiabatic approximation, rotating wave approximation, and Floquet theory explain our experimental observations.
2018-07-23
121
4
043603
REVIEWED