Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Towards optimal distortion-based visual privacy filters
 
conference paper

Towards optimal distortion-based visual privacy filters

Korshunov, Pavel
•
Ebrahimi, Touradj  
2014
2014 IEEE International Conference on Image Processing (ICIP)
IEEE International Conference on Image Processing

The widespread usage of digital video surveillance systems has increased the concerns for privacy violation. Since video surveillance systems are invasive, it is a challenge to find an acceptable balance between privacy of the public under surveillance and security related features of the systems. Many privacy protection tools have been proposed for preserving privacy, ranging from such simple methods like blurring or pixelization to more advanced like scrambling and geometrical transform based filters. However, for a given filter implemented in a practical video surveillance system, it is necessary to know the strength with which the filter should be applied to protect privacy reliably. Assuming an automated surveillance system, this paper objectively investigates several privacy protection filters with varying strength degrees and determines their optimal strength values to achieve privacy protection. To this end, five privacy filters were applied to images from FERET dataset and the performance of three recognition algorithms was evaluated. The results show that different privacy protection filters influence the accuracy of different versions of face recognition differently and this influence depends both on the robustness of the recognition and the type of distortion filter.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

icip_privacy_threshold_cameraready.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

728.69 KB

Format

Adobe PDF

Checksum (MD5)

725fb2e263104f8e64927a8e39a12353

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés