Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A multiple time step algorithm for trajectory surface hopping simulations
 
research article

A multiple time step algorithm for trajectory surface hopping simulations

Baudin, Pablo  
•
Mouvet, Francois  
•
Rothlisberger, Ursula  
January 21, 2022
Journal Of Chemical Physics

A multiple time step (MTS) algorithm for trajectory surface hopping molecular dynamics has been developed, implemented, and tested. The MTS scheme is an extension of the ab initio implementation for Born-Oppenheimer molecular dynamics presented in the work of Liberatore et al. [J. Chem. Theory Comput. 14, 2834 (2018)]. In particular, the MTS algorithm has been modified to enable the simulation of non-adiabatic processes with the trajectory surface hopping (TSH) method and Tully's fewest switches algorithm. The specificities of the implementation lie in the combination of Landau-Zener and Tully's transition probabilities during the inner MTS time steps. The new MTS-TSH method is applied successfully to the photorelaxation of protonated formaldimine, showing that the important characteristics of the process are recovered by the MTS algorithm. A computational speed-up between 1.5 and 3 has been obtained compared to standard TSH simulations, which is close to the ideal values that could be obtained with the computational settings considered.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés