Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Robust triphone mapping for acoustic modeling
 
report

Robust triphone mapping for acoustic modeling

Cernak, Milos
•
Imseng, David  
•
Bourlard, Hervé  
2013

In this paper we revisit the recently proposed triphone mapping as an alternative to decision tree state clustering. We generalize triphone mapping to Kullback-Leibler based hidden Markov models for acoustic modeling and propose a modified training procedure for the Gaussian mixture model based acoustic modeling. We compare the triphone mapping to decision tree state clustering on the Wall Street journal task as well as in the context of an under-resourced language by using Greek data from the SpeechDat(II) corpus. Experiments reveal that triphone mapping has the best overall performance and is robust against varying the acoustic modeling technique as well as variable amounts of training data.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Cernak_Idiap-RR-02-2013.pdf

Access type

openaccess

Size

563.86 KB

Format

Adobe PDF

Checksum (MD5)

639f0d98f239cffe0ec977056e37c73f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés