A Simple Learning Strategy for High-Speed Quadrocopter Multi-Flips
We describe a simple and intuitive policy gradient method for improving parametrized quadrocopter multi-flips by combining iterative experiments with information from a first-principles model. We start by formulating an N-flip maneuver as a five-step primitive with five adjustable parameters. Optimization using a low-order first-principles 2D vertical plane model of the quadrocopter yields an initial set of parameters and a corrective matrix. The maneuver is then repeatedly performed with the vehicle. At each iteration the state error at the end of the primitive is used to update the maneuver parameters via a gradient adjustment. The method is demonstrated at the ETH Zurich Flying Machine Arena testbed on quadrotor helicopters performing and improving on flips, double flips and triple flips.
2010
IEEE International Conference on Robotics and Automation ICRA
1642
1648
REVIEWED
Event name | Event place | Event date |
Anchorage, AK | May 03-08, 2010 | |