Real time multi-object tracking using multiple cameras
We build a real-time multi-people tracker, which is based on the Kalman Filter. The input to the software is a Probabilistic Occupancy Map of the observed area. The main goal of the project is to incorporate this tracker to the real-time detection software available on the CVLab demo room. A standalone version is also built. The algorithm exploits appearance cues to prevent identity switches. Instead of computing the appearance difference in a frame-by-frame manner, an appearance model is initially built when an individual enters the scene and is afterwards matched against the detected people. The frame-by-frame spatial tracking of the Kalman Filter makes the algorithm computationally efficient and the appearance model matching increases the robustness. The experiments performed in the demo room show that the method is satisfactory. We also validate our algorithm on a few datasets and the results prove that the method can be used in many scenarios. In certain datasets it even outperforms the state-of-the-art method while it’s one to two orders of magnitude faster.
Report.pdf
openaccess
1022.78 KB
Adobe PDF
0497517e7ecd54425afcd767b9e518b5
kalman_appearance.mp4
openaccess
63.34 MB
Video MP4
b1fcf6baf5714446b7bc9484f65e7881