Electrically tunable giant Nernst effect in two-dimensional van der Waals heterostructures
The Nernst effect, a transverse thermoelectric phenomenon, has attracted significant attention for its potential in energy conversion, thermoelectrics and spintronics. However, achieving high performance and versatility at low temperatures remains elusive. Here we demonstrate a large and electrically tunable Nernst effect by combining the electrical properties of graphene with the semiconducting characteristics of indium selenide in a field-effect geometry. Our results establish a new platform for exploring and manipulating this thermoelectric effect, showcasing the first electrical tunability with an on/off ratio of 103. Moreover, photovoltage measurements reveal a stronger photo-Nernst signal in the graphene/indium selenide heterostructure compared with individual components. Remarkably, we observe a record-high Nernst coefficient of 66.4 μV K−1 T−1 at ultralow temperatures and low magnetic fields, an important step towards applications in quantum information and low-temperature emergent phenomena.
s41565-024-01717-y.pdf
publisher
openaccess
CC BY
2.91 MB
Adobe PDF
d8b09d81890412632ae4ee777d56cc4c
SI 41565_2024_1717_MOESM1_ESM.pdf
publisher
openaccess
CC BY
1.68 MB
Adobe PDF
5f9a2ff78a2a53a2aae4f0e188ac04d1