Micro-homogeneity of lateral energy landscapes governs the performance in perovskite solar cells
Suppression of energy disorders in the vertical direction of a photovoltaic device, along which charge carriers are forced to travel, has been extensively studied to reduce unproductive charge recombination and thus achieve high-efficiency perovskite solar cells. In contrast, energy disorders in the lateral direction of the junction for large-area modules are largely overlooked. Herein, we show that the micro-inhomogeneity characteristics in the surface lateral energetics of formamidinium (FA)-based perovskite films also significantly influence the device performance, particularly with accounting for the stability and scale-up aspects of the devices. By using organic amidinium passivators, instead of the most commonly used organic ammonium ones, the micro-inhomogeneity in the lateral energy landscapes can be suppressed, greatly improving device stability and efficiency of FA-based single-junction perovskite solar cells. The energy disorders in the lateral direction of the junction in large-area photovoltaic modules are largely overlooked. Here, authors employ organic amidinium passivators to suppress the micro-inhomogeneity in the lateral energy landscapes and achieve high performance stable perovskite solar cells.
10.1038_s41467-024-53953-4.pdf
main document
openaccess
CC BY-NC-ND
2.19 MB
Adobe PDF
dce52216322e32816d88df83e49e1e16