Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2
 
research article

Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2

Vereb, G.
•
Manczinger, L.
•
Oszko, A.
Show more
2013
Applied Catalysis B-Environmental

In this study visible light active iodine doped titanium dioxide samples prepared by sol-gel method were investigated. Photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray fluorescence spectroscopy (XFS), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and by Brunauer-Emmett-Teller (BET) surface area technique. Different iodine/titanium ratios (eta(I)/eta(Ti) = 0.0-2.6) were applied during the synthesis and the optimum value was determined by phenol degradation under UV and VIS irradiations. The photocatalytic efficiency towards phenol degradation and the inactivation of Escherichia coli (E. coil) contaminated water under visible light illumination (conventional 24W energy-saving compact fluorescence lamps) of the most active iodine-doped TiO2 (eta(I)/eta(Ti) = 0.5; 79.5 m(2)/g; 98 wt% anatase) was compared with well known reference photocatalysts, that are Aeroxide P25 and Aldrich anatase (>85 nm primary crystallite size). Results showed that our iodine doped TiO2 was far more efficient at inactivating the E. coil and decomposing the phenol than Aeroxide P25. Electron spin resonance (ESR) measurements confirmed the formation of highly reactive OH center dot radicals by the iodine doped titania under VIS irradiation. In contrast, singlet oxygen and superoxide radical ions were not detected. The performed experiments also proved that dissolved iodine was produced in very low concentrations (about 0.01-0.025 mg/L) from the irradiated titanium dioxide. The dissolved iodine could have some contribution to the phenol oxidation and the disinfection effects. This study demonstrated this property of iodine-doped titanias for the first time. (C) 2012 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.apcatb.2012.08.037
Web of Science ID

WOS:000312689500022

Author(s)
Vereb, G.
Manczinger, L.
Oszko, A.
Sienkiewicz, A.  
Forro, L.  
Mogyorosi, K.
Dombi, A.
Hernadi, K.
Date Issued

2013

Publisher

Elsevier Science Bv

Published in
Applied Catalysis B-Environmental
Volume

129

Start page

194

End page

201

Subjects

Photocatalysis

•

Iodine doped

•

Visible light

•

Disinfection

•

Escherichia coli

•

Titanium dioxide

•

Spin trapping

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPMC  
LPCM  
Available on Infoscience
March 28, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/90879
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés