Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Toward broadband electroacoustic resonators through optimized feedback control strategies
 
research article

Toward broadband electroacoustic resonators through optimized feedback control strategies

Boulandet, R.  
•
Lissek, H.  
2014
Journal of Sound and Vibration

This paper presents a methodology for the design of broadband electroacoustic resonators for low-frequency room equalization. An electroacoustic resonator denotes a loudspeaker used as a membrane resonator, the acoustic impedance of which can be modified through proportional feedback control, to match a target impedance. However, such impedance matching only occurs over a limited bandwidth around resonance, which can limit its use for the low-frequency equalization of rooms, requiring an effective control at least up to the Schroeder frequency. Previous experiments have shown that impedance matching can be achieved over a range of a few octaves using a simple proportional control law. But there is still a limit to the feedback gain, beyond which the feedback-controlled loudspeaker becomes non-dissipative. This paper evaluates the benefits of using PID control and phase compensation techniques to improve the overall performance of the electroacoustic resonator. More specifically, it is shown that some adverse effects due to high-order dynamics in the moving-coil transducer can be mitigated. The corresponding control settings are also identified with equivalent electroacoustic resonator parameters, allowing a straightforward design of the controller. Experimental results using PID control and phase compensation are finally compared in terms of sound absorption performances. As a conclusion the overall performances of electroacoustic resonators for damping the modal resonances inside a duct are presented, along with general discussions on practical implementation and the extension to actual room modes damping.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

140512_JSV-D-00690 - revision2.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

977.3 KB

Format

Adobe PDF

Checksum (MD5)

330d838eb44b24e256f5e7ed33557b38

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés